Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA.

نویسندگان

  • Lisa Arnqvist
  • Paresh C Dutta
  • Lisbeth Jonsson
  • Folke Sitbon
چکیده

Transgenic potato (Solanum tuberosum cv Désirée) plants overexpressing a soybean (Glycine max) type 1 sterol methyltransferase (GmSMT1) cDNA were generated and used to study sterol biosynthesis in relation to the production of toxic glycoalkaloids. Transgenic plants displayed an increased total sterol level in both leaves and tubers, mainly due to increased levels of the 24-ethyl sterols isofucosterol and sitosterol. The higher total sterol level was due to increases in both free and esterified sterols. However, the level of free cholesterol, a nonalkylated sterol, was decreased. Associated with this was a decreased glycoalkaloid level in leaves and tubers, down to 41% and 63% of wild-type levels, respectively. The results show that glycoalkaloid biosynthesis can be down-regulated in transgenic potato plants by reducing the content of free nonalkylated sterols, and they support the view of cholesterol as a precursor in glycoalkaloid biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism.

To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed va...

متن کامل

Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase

Steroidal glycoalkaloids (SGAs) are secondary metabolites of Solanaceous plants. Two predominant glycoalkaloids, a-chaconine and asolanine are produced in potatoes. An antisense transgene was constructed to down-regulate glycoalkaloid biosynthesis using a potato cDNA encoding a sterol alkaloid glycosyltransferase (Sgt1). Introduction of this construct into potatoes resulted in some lines with a...

متن کامل

Regulation of sterol and glycoalkaloid biosynthesis in potato (Solanum tuberosum L.) – Identification of key genes and enzymatic steps

Steroidal glycoalkaloids (SGA) are toxic secondary metabolites present in some members of the Solanaceae family, including potato and tomato. The SGA level in tubers of potato (Solanum tuberosum L.) depends on genetic factors, but can also increase in response to e.g. wounding and light exposure. An upper limit of 200 mg SGA/kg f.w. is recommended in tubers used for human consumption. The SGA b...

متن کامل

Transcript profiling of two potato cultivars during glycoalkaloid-inducing treatments shows differential expression of genes in sterol and glycoalkaloid metabolism

Steroidal glycoalkaloids (SGA) are sterol-derived neurotoxic defence substances present in several members of the Solanaceae. In the potato (Solanum tuberosum), high SGA levels may render tubers harmful for consumption. Tuber SGA levels depend on genetic factors, and can increase as a response to certain stresses and environmental conditions. To identify genes underlying the cultivar variation ...

متن کامل

GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway

Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 131 4  شماره 

صفحات  -

تاریخ انتشار 2003